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Abstract We study the mixing parameters for the search

of an optimal geometry using the Hamiltonian algorithm

(HA) combined with ab initio molecular orbital calcula-

tions. We choose the C–C–C–C dihedral angle of the

butane molecule as an example. HF/3-21G level calcula-

tions are employed as the molecular orbital calculations.

The distributions of the eigenvalues of mixing coefficients

are fitted with the linear, quadratic, and quartic functions.

Analyses of HA calculations both up to 2,000 and 60,000

iterative calculations show a possibility that the mixing

process reduces the number of iterations. The low energy

HF/3-21G, B3LYP/6-31G**, and PCM B3LYP/aug-cc-

pVDZ optimized structures of the N-acetyl L-histidine

N0-methyl amide and four water molecule supermolecule

were also determined using the HA optimization method

and compared to the recently determined thought to be

global minimum energy structure.

Keywords Hamiltonian algorithm � Mixing �
Molecular orbital � Molecular dynamics

1 Introduction

Over the last two decades of the twentieth century, the

energy gradient method combined with the ab initio

molecular orbital theory has been widely used and has

enabled the optimization of a molecular structure with

electronic structure calculations. In such an optimization,

several optimization methods, such as the Newton–Raph-

son, steepest descent, and conjugate gradient methods, are

usually applied as algorithms for the optimization itself.

These methods, however, have two difficulties that should

be overcome in searching for the global minimum.

1. It is necessary to start from the vicinity of minima or

the optimization process sometimes diverges.

2. Starting from one minimum point, it is impossible to

locate another minimum point, i.e., it is impossible to

escape from a local minimum.

For example, Teramae et al. accidentally found an ‘‘ortho’’

conformation rather than ‘‘anti’’ and ‘‘gauche’’ conforma-

tions for the saturated carbon chain C4Y10 [1, 2]. The ortho

conformation had not been considered except for the case

that Y is fluorine, C4F10. Even in C4F10, the ‘‘ortho’’

structure had not been studied in detail.

The Monte Carlo (MC) method, as well as the simu-

lated annealing method, are usually applied to escape

from a local minimum. In the MC method, a large part of

the computational time is wasted in calculating the energy

of unstable higher energy structures of higher energy. In

the simulated annealing method, it is difficult to control

the temperature of the critical point. Geometry optimi-

zation using the above two methods combined with

ab initio molecular orbital calculations is considered dif-

ficult and has not been reported to the authors’ best

knowledge.
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The Hamiltonian algorithm (HA) [3] is proposed as a

general optimization method and was applied to solve

many problems, such as the optimization of packet routing,

the optimization of axis adjustment of optical fibers, the

optimization of the quantum table used by the Joint Pho-

tographic Experts Group (JPEG) [4], and a design theory of

material systems [5]. We have recently applied the HA to

solve the quantum chemistry topological problem [6], i.e.,

the geometry optimization of molecular structures. We

showed that the HA provides an effective search of the

potential energy surface and that we can find an energy

minimum even if we start from another local energy min-

imum by determining the optimal structure of the HCN

molecule starting from the HNC molecule. We also per-

formed molecular dynamics studies on the glycine oligo-

mers [7, 8], the tripeptides (glycine, alanine, valine,

leucine, and isoleucine trimers) with ab initio molecular

orbital calculations [9] and enkephalin with the empirical

force field [10].

For a more advanced study, the HA has recently been

employed to optimize the molecular structure of a benzo-

diazepine minor tranquilizer and this work showed the

possibility of designing a drug using the HA [11].

The optimized structures themselves are easily obtained

for relatively small molecules if we employ the HA by

choosing suitable ‘‘mixing parameters’’ [6–11]. The mixing

parameters are considered to represent an approximate

incorporation of the mixing of the statistical physics.

In the present article, we study the behavior of molec-

ular dynamics with the Hamiltonian algorithm, especially

an effect of the mixing parameters. For this purpose we

select the butane molecule and focus our attention on the

torsional degree of freedom. The molecular dynamics

calculations are performed with all of the degrees of free-

dom. A diatomic molecule has just one nuclear geometrical

degree of freedom, and we consider the diatomic molecule

to be too simple as an example. We study the effect of

choosing a mixing parameter and the eigenvalues of the

matrix representing the mixing of the motion of an atomic

nucleus. The PCM B3LYP/aug-cc-pVDZ optimized low

energy structures of the N-acetyl L-histidine N0-methyl

amide and four water molecule supermolecule are also

calculated/determined using the HA as another more real-

istic molecular system than simple butane.

2 Method of calculation

The details of the HA have been discussed elsewhere [3].

In this article, we only indicate the part considered nec-

essary for the present study.

In the HA, we consider the virtual motion of particles x

(in this case, the atomic nuclei) with the cost function V(x),

which is the energy calculated by the ab initio molecular

orbital method in the present case, and develop a Hamil-

tonian of the motion

Hðp; xÞ ¼ 1

2

X

i;j

pibijpjffiffiffiffiffiffiffiffiffiffi
mimj
p þ VðxÞ; ð1Þ

where (bij) is a positive definite symmetric matrix, pi is

momentum, and mi is the mass of particles. The first term

on the right-hand side of the equation is the virtual kinetic

energy term, and we allow the off-diagonal term of the

kinetic energy. The off-diagonal term reveals the mixing of

the motion of each particle, and the coefficient bij repre-

sents the degree of this mixing. This mixing procedure

enables the effective search of the energy surface [12].

By including the non-diagonal term of the kinetic

energy, the randomness of the motion would be expected to

increase and the dependence of the motion on the initial

structure would be expected to decrease. The possibility to

reach the global minimum thus becomes larger, which is

clearly shown in the optimization of axis adjustment of

optical fibers. It is equivalent to ab initio molecular

dynamics simulation when the off-diagonal terms are zero.

The usual molecular dynamics (MD) calculation depends

on the initial structures and requires us to start from several

initial structures, increasing the total computational time.

The following is used to define the coefficient bij. Let B

denote the positive definite symmetric matrix (bij).

D ¼ Iþ kA; ð2Þ

where I is an identity matrix. In order to avoid an

incorporation of the regularity, matrix A is produced by

random number generator as followings.

Aij ¼ Aji ¼ aij �
1

2

� �
; ð3Þ

where aij is a random number between 0 and 1. We set

k ¼ 1
2

in Eq. 2. The matrix C is obtained from the matrix D

by using the Gram–Schmidt process. The positive definite

symmetric matrix B is given by using the non-constant

eigenvalue e

B ¼ CeCT ; ð4Þ

where e is a diagonal matrix, whose diagonal elements are

{ei}

Here, we just note that the degree of mixing is repre-

sented by the eigenvalues of the matrix. We define the

maximum difference between the eigenvalues of the matrix

B and 1 as the mixing coefficient. The eigenvalues were

previously given by a linear function. However, in the

present paper, we also try to provide them using a quadratic

function and a quartic function, as shown in Fig. 1. The i-th

eigenvalue is, therefore, given in the following equation,

where N is the number of atoms, i runs from 0 to 3N - 1,
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L is 1 (linear), 2 (quadratic), or 4 (quartic), and

D ð0�D� 1Þ is a mixing coefficient.

ei ¼ 1þ D� 2i� 3N

3N � 1

� �1
L

2i� 3N � 0ð Þ ð5Þ

ei ¼ 1� D� � 2i� 3N

3N � 1

� �1
L

2i� 3N\0ð Þ: ð6Þ

The power (1/L) is defined because we used the fitting

function of the form like x = yL as shown in Fig. 1.

The equation of motion is presented as

€xi ¼
X

j

bijfjffiffiffiffiffiffiffiffiffiffi
mimj
p ; ð7Þ

where fi is the force acting on the atom i, which can be

calculated by the energy gradient method. For a certain

initial structure and an initial kinetic energy, we can

successively solve the equation of motion by the Verlet

method [13, 14] while keeping the total energy of the

system constant. When the constraints of the kinetic

energies for the translations of the center of gravity are zero,
X

i

mivið0Þ ¼ 0: ð8Þ

The initial geometry and velocity should be given as the

parameters of the motion. We examined the initial kinetic

energy in 0.05 a.u. in this study. We do not vary only the

torsional angle, but all the degree of freedom of butane

molecule. The kinetic energy is almost 10 times of the

torsional barrier height; however, the kinetic energy is

distributed to all other degree of freedom, 3N - 7.

Therefore, the kinetic energy for torsional barrier is not

so large. If we increase kinetic energy, the molecule

usually will move more rapidly or sometimes will

decompose to its substructures. The kinetic energy of the

present study is indeed too small for the purpose of the

geometry optimization, because the kinetic energy was

selected in order to see clearly the difference of the mixing

parameters.

The time interval Dt is 40 a.u. throughout the present

study. We keep both the geometry and potential energy

(=cost function) of the molecule during the motion period

and determine the minimum point after all of the calcula-

tions have been finished. We can find the minimum of the

potential energy and perform the optimization of the

molecular structure, if the motion exhibits mixing and we

can observe the motion for a sufficient long time.

The optimization procedure utilizes classical dynamics

and, therefore, we call it a ‘‘Hamiltonian algorithm’’. We

developed a program based on the GAMESS program [15].

The RHF calculation with the 3-21G basis set [16] is used

throughout. The time step used to solve the Verlet method

is 40 a.u., as denoted above, and the iterative calculations

are repeated 2,000 and 60,000 times. All of the calculations

start from the HF/3-21G optimized trans structure obtained

by using the Gaussian 03 [17] program.

3 Results and discussion

Figure 2 shows the plots of the dihedral angles of the C–C–

C–C backbone in the butane molecule for the first 2,000

iterative HA calculations using the distribution of eigen-

values with linear, quadratic, and quartic functions. Fig-

ure 2 also shows a comparison between the results of the

mixing coefficient 0.0 (i.e., no mixing) and those of the

mixing coefficients 0.05 and 0.1.

Regardless of the function type used, the graph clearly

shows that the inclusion of the mixing coefficients 0.05 and

0.1 shifts the top of the graph to the left. This characteristic

of the graph is clearest when using the quartic function as

the distribution of the eigenvalues of the mixing matrix. In

other words, the mixing reduces the cycle time of the

vibration of the dihedral angle, although the dihedral angle

itself seems to vacillate periodically as shown in Fig. 2.

This result suggests a possibility that the mixing process

reduces the number of iterations.

This effect is larger when the mixing parameter is 0.1

rather than when the mixing parameter is 0.05. This result

indicates that a larger mixing coefficient gives a larger

effect. However, in the present study, the calculations with

mixing coefficients larger than 0.15 almost show the

divergence of the iterative HA calculations, particularly

when using the quartic function. The larger mixing coef-

ficient is expected to mix the motions of different coordi-

nates strongly.

Figure 3 shows the plots of the dihedral angles obtained

with full 60,000 iterative HA calculations. The results are

shown for four cases (a) without mixing and with mixing

with (b) linear, (c) quadratic, and (d) quartic functions.
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1
linear
quadratic
quartic
no mixing

Fig. 1 Plots of distribution of eigenvalues when mixing coefficient is

D. The fitting functions used are none (i.e., without mixing), linear,

quadratic, and quartic functions
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The mixing coefficient is kept at 0.15 except for the case

without mixing. The graphs (c) and (d) are terminated in

the middle of the iterations because the iterative HA cal-

culations diverge in the case of approximately 49,000

calculations using the quadratic function and in the case of

approximately 33,000 calculations using the quartic func-

tion, suggesting that either the initial kinetic energy 0.05

a.u. or the mixing coefficient 0.15 is very large in the cases

of the quadratic and quartic functions.

In the case without mixing, the dihedral angles are kept

at 180�. This result shows that the butane molecule has

been staying near the trans conformation during the HA

calculations. In other cases with mixing, the dihedral angle

of butane runs in full space, i.e., from 0� to 360�, after a

certain number of iterative HA calculations depending on

the distribution function of eigenvalues.

Note that, in the case of the linear function, the dihedral

angle goes near the trans configuration in the case of

approximately 38,000 calculations and remains near the

trans configuration in the case of approximately 10,000

calculations. It deviates from the trans configuration and

returns near the trans configuration in the case of approx-

imately 57,000 calculations and remains near the trans

configuration up to the end of the 60,000 calculations.
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Fig. 2 Plots of dihedral angles

of C–C–C–C backbone in

butane molecule for first 2,000

iterative HA calculations using

distribution of eigenvalues with

a linear, b quadratic, and

c quartic functions, using

mixing coefficients 0.0

(i.e., without mixing), 0.05, and

0.1, respectively
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Fig. 3 Plots of dihedral angles

with full 60,000 iterative HA

calculations a without mixing

and with mixing with b linear,

c quadratic, and d quartic

functions. The mixing

coefficient is kept at 0.15 except

for the case without mixing
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In the case of the quadratic function, the dihedral angle

goes near the trans configuration in the case of approxi-

mately 34,000 calculations and remains near the trans

configuration up to 38,000 calculations. It never returns

near the trans configuration. In the case of the quartic

function, the secondary phase indicating the return of the

angle near the trans configuration is not observed or is too

short to recognize.

Both Figs. 2 and 3 show a possibility that the mixing

process reduces the number of iterations. Indeed, the

gauche structures are appeared in Fig. 3b–d. Listing only

clear examples, the dihedral angles in Fig. 4b are around

300� between 29,000 and 32,000 iterations and around 60�
between 33,000 and 34,000 iterations. The dihedral angles

in Fig. 3c are around 60� between 29,000 to 33,000 itera-

tions and those in Fig. 3d are around 60� between 25,500

and 27,000 iterations. On the other hand, there is no gauche

structure in Fig. 3a.

Note that the results presented here are valid for the

micro-canonical ensemble; however, we believe that the

HA would have a possibility to be extended to the canonical

or NVT ensemble when the velocity Verlet method is

employed.

About the comparison with the other optimization

methods, we found a result of a search for the Lin
0/?1/-1

(n = 5–7) lowest energy structures using the ab initio

gradient embedded genetic algorithm (GEGA) by Alex-

androva and Boldyrev [18]. In introduction section, we

stated that it was impossible to escape from a local mini-

mum using the optimization routines based on the Newton–

Raphson method. However, very recent work showed that

it is possible using a Newton–Raphson algorithm to go

from one local minimum to another by optimizing in the

presence of an applied external force. This procedure,

termed enforced geometry optimization (EGO), has been

successfully used to locate 10 different structural isomers

starting from the converged geometry of cis-stilbene [19].

Maeda and Ohno proposed the global mapping method

[20] and applied it to many systems, such as the potential

surface searches of H2O and H2CO [20], H2CO and pro-

pyne [21], and CH3CHO [22], the minimal energy points

on seams of crossing of H2CO [23], (H2CO)(H2O)100, and

Fig. 4 N-acetyl L-histidine N0-methyl amide and four water molecules, PCM B3LYP/aug-cc-pVDZ optimized structures. a–e Correspond to 1–5

columns of Table 5
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Si6(C12H17)6, in the ONIOM (QM:MM) framework [24],

and so on. It will be interesting to compare the results of

the HA optimization with those of GEGA, EGO, and

global mapping. This is, however, completely beyond the

purpose of the present work and should be considered in

near future. Furthermore, we consider the goals of these

methods are a little bit different from the HA method. The

HA method aims more global search of the molecular

structures as will be shown below.

Recently, the multiple minimum problems of biomole-

cules in complex environments were extensively studied

[25–38]. In order to show an example of the optimization

of more realistic system than a butane molecule and the

possibility of the application of the HA optimization on the

biomolecule, the optimized HSD structures of N-acetyl

L-histidine N0-methyl amide (NALHNMA) that was

reported by Jalkanen et al. [33] are calculated by using the

HA. Since discussing in detail about these results is com-

pletely beyond the purpose of the present study, we just

would like to show the results. The optimization procedure

used in these calculations is as follows. The 3,000 iterative

calculations using the HA is performed. The starting

geometry is obtained by the usual geometry optimization

by gausview [39] and Gaussian 09 (g09) [40] programs.

We obtain snapshots at every 100 times calculations of

3,000 HA calculations and then switch to optimize with the

conventional optimization procedure using g09 program

[38] in order to obtain the rigorous structures. We obtain,

therefore, 30 optimized structures for 3,000 iterative cal-

culations including duplicated structures. We usually

obtain several isomers as shown below.

The HF/3-21G and PCM HF/3-21G optimization of the

NALHNMA and the NALHNMA with four water mole-

cules were performed. The HF/3-21G results are shown in

Tables 1, 2, and 3, where the notation of the dihedral

angles /, w, v1, and v2 are the same as the paper of

Jalkanen et al. [33]. The starting geometry corresponds to

the last column of Table 1 and is found to be the least

stable form among the structures obtained here. In this

example, the HA can search the global minimum, even if

the starting geometry is far from the global minimum.

The B3LYP/6-31G** structures of NALHNMA shown

in Table 4 are obtained with the usual optimization from

the HF/3-21G optimized structures and compared with the

results of Jalkanen et al [33]. Only the global minimum

energy structure is identical with that of their paper, and it

is interesting that the remaining structures are completely

different from each other. This is not surprising since the

algorithms are different. The potential surface of the

NALHNMA is, indeed, very complex and there are many

local energy minima.

The PCM B3LYP/aug-cc-pVDZ optimized structures of

the NALHNMA and four water molecules are shown in

Table 5 and Fig. 4a–e where Fig. 4a is calculated to be the

most stable isomer. The Fig. 4a and b as well as d and e has

the same NALHNMA backbone, and the differences

between them are just the directions of the water mole-

cules. We obtained five structures reoptimizing the first five

stable isomers in Table 5 using the standard optimization

routines of g09. Since Jalkanen et al. did not show the

detail of their optimized complete geometries, we cannot

provide a detailed comparison with ours, but the five

optimized geometries seem to be all different from the five

additional structures of Jalkanen et al. However, note that

we did not perform the frequency analysis calculations

because of the lack of our computational resources and

these five minima may not the true minima.

Table 1 HF/3-21G conformational energies and optimized HSD

structures of N-acetyl L-histidine N0-methyl amide (NALHNMA)

/ w v1 v2 E (hartree)

-84.05 66.33 48.77 68.48 -712.535583

-114.13 42.52 56.63 74.32 -712.527921

172.79 175.19 45.13 -90.77 -712.520942

-85.21 62.77 45.03 -109.67 -712.520715

-85.17 67.39 -61.95 176.65 -712.519645

-140.33 27.90 -153.08 -63.59 -712.518301

-169.94 169.21 56.01 -159.98 -712.517249

-132.74 31.89 52.82 -100.98 -712.516878

80.11 16.35 -46.41 94.15 -712.516864

74.23 170.17 -52.30 89.11 -712.515626

74.17 170.32 -52.24 89.03 -712.515624

-146.54 115.53 -171.30 163.62 -712.502558

Table 2 PCM HF/3-21G conformational energies and optimized

HSD structures of N-acetyl L-histidine N0-methyl amide (NALHNMA)

/ w v1 v2 E (hartree)

-135.73 29.76 -155.61 -61.18 -712.549353

-149.31 147.26 -179.12 -97.97 -712.542333

-142.82 46.50 -158.41 108.78 -712.541972

-143.31 47.72 -158.80 105.60 -712.541805

-135.85 67.29 -167.97 97.80 -712.541449

-87.99 126.36 -177.71 70.85 -712.541433

-98.04 119.71 -177.23 73.17 -712.541119

-121.48 100.50 -178.41 88.46 -712.541067

-89.31 128.06 -178.26 68.90 -712.540871

-77.12 -46.45 -170.34 168.05 -712.540469

-139.37 112.24 -175.42 174.08 -712.539660

-144.20 128.73 -177.23 -144.54 -712.539586

-69.09 150.35 -176.69 64.15 -712.539158

-139.94 39.52 -159.15 166.82 -712.538970

-106.63 15.36 -155.81 -157.98 -712.537020
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In conclusion, we study the mixing parameters for the

search of an optimal geometry using the Hamiltonian

algorithm (HA) combined with ab initio molecular orbital

calculations. We choose the C–C–C–C dihedral angle of

butane and the backbone and side chain torsional angles of

NALHNMA and the positions of the four water molecules

as examples. The distribution of the eigenvalues of mixing

coefficients is fitted with the linear, quadratic, and quartic

functions. Analyses of HA calculations both up to 2,000

and 60,000 iterative calculations show a possibility that the

mixing process reduces the number of iterations.

The next step of the present study will be to apply the

HA in larger molecules such as biomolecules, particularly

protein molecules. We plan to try such a challenging cal-

culation, the results of which will be published elsewhere.
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HNMA) with four water molecules
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